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Many problems, including matrix-vector multiplication and polynomial evalua-
tion, involve the computation of linear forms. An algorithm is presented here that
offers a substantial improvement on the conventional algorithm for this problem
when the coefficient set is small. In particular, this implies that every polynomial
of degree n with at most s distinct coefficients can be realized with O (n/logsn)
operations. It is demonstrated that the algorithm is sharp for some problems.

l. Introduction

How many operations are required to multiply a vector
by a known matrix or evaluate a known polynomial at one
point? Such questions are frequently asked and Winograd
(Ref. 1) has shown the existence of real matrices and poly-
nomials (containing indeterminates over the rationals, for
example) for which the standard matrix-vector multipli-
cation algorithm and Horner’s rule for polynomial evalu-
ation are optimal. That is, n® real multiplications and
n(n — 1) additions are required for some n X n matrices
to multiply the matrix by an n-vector, and n multiplica-
tions and n additions are required by some polynomials
of degree n to evaluate the polynomial. In this paper, we
use an algorithm for the computation of “linear forms” to
show that the n X n matrix-vector multiplication problem
and the polynomial evaluation problem can be solved with

1Consultant from Brown University; Division of Engineering.
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O (n*/log, (n)) and O (n/log, (n)) operations, respectively,
when the matrix entries and the polynomial coefficients
are known and drawn from a set of size s (even when the
entries and coefficients are variables). These results are
obtained by exhibiting potentially different algorithms
for each matrix and each polynomial.

The algorithm presented here for the computation of
“linear forms” is very general and can be applied to
many problems including matrix-matrix multiplication,
the computation of sets of Boolean minterms, of sets of
product over a group, as well as the two problems men-
tioned above. Applications of this sort are discussed in
Section III.

We now define “linear forms.” Let S and T be sets and
let R be a “small” finite set of cardinality |R|='s. Lect
*:RX §—- T be any map (call it multiplication) and let
+:T X T—- T be any associative binary operation (call
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it addition). Then the problem to be considered is the
computation of the m “linear forms” in xy,%,, - -+ , %,
Air* %+ Qino s+ 0 0 A Ay Xy, 1=i=m

where a;;¢ R and x;¢S. The elements in R shall be re-
garded as symbols that may be given any interpretation
later. For example, in one interpretation, R may be a finite
subset of the reals and, in another, R may consist of s dis-
tinct variables over a set Q, say.

An algorithm is given in the next section that for each
m X n matrix of coeflicients A = {a;;} evaluates the set

L, (x) :{E aijxj[léiém}

4

of lincar forms with O (mn/log, (m)) operations, when m
is large where s = |R|. The conventional direct evalua-
tion of L, (x; involves mn multiplications and m (n — 1)
additions, so an improvement is seen when s is small rela-
tive to m.

Polynomial evaluation is examined in Section IV and
the algorithm for lincar forms is combined with a decom-
position of a polynomial into a vector-matrix-vector mul-
tiplication to show that cvery polynomial of degree n
whose coefficients are taken from a set of s clements can

be realized with about Y n's scalar multiplications, 2V n

nonscalar multiplications, and O (n/log, (n)) additions,
when n is large. The polynomial decomposition is similar
to onc used by Paterson and Stockmeyer (Ref. 2), and it
achieves about the same number of nonscalar multiplica-
tions but uscs fewer scalar multiplications and additions.

In Section V, a simple counting argument is developed
to show that the upper bounds derived in earlier sections
are sharp for matrix-vector multiplications by “chains,”
that is, straight-line algorithms.

Il. The Algorithm

The algorithms for computing L, (x), where |R| = s,
will be given in terms of an algorithm (3 for the construc-
tion of all distinct linear forms in y,, y., * - -, yx with coeffi-
cients from R. That is, /B computes Ly (y) where B is the
§% X k matrix with §* distinct rows and entries from R. The
algorithm ] for L (x) will use several versions of 3.

The algorithm B has two steps. Let R = {a), au, "+, as ).
Then,

Step 1: form «; - y;; l=i=s1=j=k
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Stepz: letS(i1,ig, T ,ill):
ail'y1+ai2.y2+ PR +aip.y7;
1=0=Fk1=i<s

Each element of L; (y) is equal to S (i, 45, * - -
some set {i,, 1, - -

, &) for
-, 4} of not necessarily distinct integers

in {1,2, - - - ,s}. Construct S (i1, 4, * - - ,4,) recursively
from
S() = ai,*ys
and
S(bytsy = - L) = S (iy, 4o, C ) toag,

for 2 =10 =k.

The first step uses = = ks scalar multiplications, Let
N (s, #) be the number of additions to construct all linear
forms S (i,,i,, - - - ,i,). Then, from step 2, it follows that

N(s1) =0

N(s,) = N(s,f — 1) + ¢
From this we conclude that

N(s,f) = [(s" = D/As—1)] — (s + 1) =5
= gf
fors==2 and t =2,
Therefore, the number o, of additions to form L (y) sat-
isfies & == gp == §F+1,
Partition A into

A: [Bl)B‘-” T ’Bﬂ]

where B, - - - ,B,.;arem X k,B,ism X (n — (p — 1) k),
and p = [n/k7. Similarly, partition x = y*,y2, - - - | y?
where y" = (%1 51, © © * ,%m) for 1=r=p — 1 and y?
is suitably defined. It follows that

Ax = B,y' + B.,y* + - - - + B,y” ()

where + denotes column vector addition.

The algorithm ) for L, (x) has two steps.

Step 1: construct Ly (y"), 1 =r = p, using B, that is,
identify the linear forms corresponding to rows of
B, and choose the appropriate forms from those
generated by £3 on y”.

Step 2: construct L, (x) by adding as per () above.
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The number of multiplications used by (4 is =4 = ns.
The number of additions used in step 1 is no more than
pos, and in step 2 it is no more than m (p — 1). Therefore,
the number of additions used by # satisfies

oa=pst+m(p—1)

where p = [n/k7. Ignoring diophantine constraints and
with k = log, (m/log, (m)), we have

THeOREM 1. For each m X n matrix A over a finite set R
of cardinality |R| = s, the m “linear forms”

Li(x) = {ai %+ - + apxn: 1=i=m)
can be computed with =, = ns multiplications and ¢, =
O (mn/log, (m)) additions when m is large relative to s.

Proof: Ignoring diophantine constraints, we have

kel
s+ m
Lo 81 =n <—*—E‘~—>

and s* = m/log, (m). Therefore,

o E (1 e /(L — e)
A 10gN (771) 1) 2

where ¢, = s/log, (m) and &, = log,log, (m)/log, (m). If
e, < %, it is easily shown that (1 — ¢,) =1 + 2¢.. Also,

(14 ) (1 + 2e) =1 +2(e, + 22

if €. < %, which holds for m == 16 when s ==2. It follows
that

= e +
7 log. (m) { (e )

when m == 16. Since , and ¢, approach zero with increas-
ing m, the conclusion of the theorem follows. Q.E.D.

When m > > s, this result represents a distinct im-
provement over the conventional algorithm for evaluating
L, (x), which uses m scalar multiplications and m (n — 1)
additions. It should be noted that the reduction in the
number of additions by a factor of log, (m) obtained with
algorithm (A follows directly from a reduction by a factor
of about k in algorithm /3. The obvious algorithms for
Ly (y) uses ks* additions, but /3 computes it with no more
than s*** additions.
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Although algorithm 4 (and £3) was discovered inde-
pendently by the author, it does represent a generaliza-
tion of an algorithm of Kronrod reported in Arlazarov,
et al. (Ref. 3). His result applies to the multiplication of
two arbitrary Boolean matrices. The heart of algorithm 4
is algorithm &3 and this was known to the author (Ref. 4)
in the context of the calculation of all Boolean minterms
in n variables. This will be discussed in the next section.

1. Applications

In the set L, (x)} of linear forms, the elements a;; and x;
are uninterpreted as are the operations of multiplication
and addition. By attaching suitable interpretations, it is
seen that algorithm &) for linear forms has applications
to many different problems, several of which are now

described.

A. Multiplication of a Vector by a Known Matrix

Let R be a set of s variables over S, R = {z,,z., """, Zs},
and let S = T = {reals}. Let + and - be addition and
multiplication on the reals. Then L, (x) represents multi-
plication of x = (x;, x,, - - -, x,) by a known (but not
fixed) matrix A. That is,

Lo(x)={zk,, %+ 25,0+ +2z,

n

"Xt 1=n=m)}

where the m X n matrix of indices {k;;} is fixed. For any
given matrix {k;;}, L, (x) can be computed using ns real
multiplications and O (mn/log, (m)) real additions.

Independent evaluation of the m forms requires a total
of at least m (n — 1) operations for any s, since each form
consists of n functionally independent terms.

Special Cases:
(1) zi, 20, - -

(2) s =2,z =0, z, = 1. Then, L, (x) is a set of subset
sums such as

, %, are assigned distinct real values.

{x, + x, x, +ox, +oxg)

NOTE: Concerning Case (1), Winograd (Ref. 1) has
shown that there exist fixed real (and unrestricted)
m X n matrices and vectors x, such that mn real mul-
tiplications and m (n — 1) real additions are required
for their computation with “straight-line” algorithms.
Thus, a significant savings is possible if the matrix
entries can assume at most s distinct real values, and s
is small relative to m.
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B. Matrix-Matrix Multiplication AX, A Known

Let R and S be as above and let T be the p-fold car-
tesian product Q¥, Q = {reals}. Let + be conventional
scalar multiplication (consisting of p real multiplications)
and let + be vector addition on the reals (consisting of p
real additions). Then, L, (x)} represents multiplication of
the n X p matrix X over the reals by a known (but not
fixed) m X n matrix A. That is,

LA(X):{zkil'El+zki2'Ez+ SRR S ST lézém}

where %, denotes the ¢-th row of X and the m X n matrix
of indices {k;;} is fixed. For any given matrix {k;;}, L4 (x)
can be computed using nps real multiplications and
O (mnp/log, (m)) real additions.

NOTE: When n = m — p, Strassen’s algorithm
(Ref. 5} for matrix-matrix multiplication can be used
at the cost of at most (4.7) n'°%2"7 binary operations.
As a consequence, Strassen’s algorithm is asymp-
totically superior to algorithm (4 for this problem.
However, when s = 2, algorithm (4 is the superior
algorithm for n = 10*°!! Moral: beware of arguments
based upon asymptotics.

C. Boolean Matrix Multiplication

Let R=S={0,1}, T = {0,1}?, let * be Boolean vector
conjunction, and let -+ be Boolean vector disjunction.
Then, L,(x) represents the multiplication of a known
Boolean m X n matrix A by an arbitrary Boolean n X p
matrix X. That is,

LA (X) - {ail '—x—l +a;. '-x—z + o

+ai, Xy, 1<=i=m)}

where ; is the {-th row of the n X p matrix X. The algo-
rithm for computing AX uses no multiplications and
O (mnp/log. (m)) additions.

NOTE: If A is an arbitrary Boolean matrix and if the
selection procedure of step 1 of algorithm &3 can be
executed without cost, the algorithm of Kronrod
(Ref. 3) results. The number of operations performed,
exclusive of selection, equals that given above. The
Kronrod algorithm uses more operations because of
a poor choice of the parameter k.

D. Boolean Minterms

Let R=S =T = {0,1)}, let + be the Boolean conjunc-
tion, and let + be defined by
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a*Xx =

where ¥ denotes the Boolean inverse. Then, L, (x) repre-
sents a set of minterms such as

{Eﬁczxs, lez'frs, xlfsf:s}

NOTE: The set of all 2" distinct minterms, suitably
ordered, represents a map from the binary to positional
representation of the integers {0,1,2, - - - 2% — 1}.
This map can be realized with at most 2*** conjunc-
tions and is a map that is useful in many construc-
tions, such as those in Ref. 4.

E. Products in a Group G

Let R={—-1,0,1}, S=T = G, let a*x = x* (raise to
a power), and let + be group multiplication. Then L, (x)
represents a set of m products of n terms each. For
example,

{abtcd',bctatctd?)

is such a set, where x* is the group inverse of x and x° is
the group identity that is suppressed.

IV. Polynomial Evaluation

We turn next to the evaluation of polynomials of de-
gree n. Let
px) =a +a 2t +a, x>+ - +agan
where + and * represent vector addition and scalar multi-

plication, where x' = x, x = x+x-, and * represents vec-
tor multiplication. Let a; ¢ R, x¢ T and

cRXT->T
+:TXT-»T
* 1 TXT>T

where + and * are associative and * distributes over .
We shall construct an algorithm £ for polynomial evalua-
tion, which employs algorithm % for linear forms.

Algorithm & has three steps. Without great loss of gen-
erality, let n = k{ — 1, and assume that a = (ag,a,, " -, a,)

has entries from a set of size s.

Step 1: construct x2, %%, - - -  x.
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Step 2: construct the k linear forms in 1,x,%% - - - "

o (x) ad, Gy 1
74 (x) (4277 Y R / FT 30 x*
| re(x) ) Lawns e X

using algorithm (4.

Step 3: construct p (x) = r, (x) + 7, (x) #x' + -+ + 15 (%)
x+x* 11 ysing Horner’s rule. Let o, denote the
number of vector additions used by &, =, the
number of scalar multiplications and u, the num-
ber of vector multiplications. Since the forms re-
quired in step 1 can be realized with { — 1 vector
multiplications and step 3 with k — 1 such multi-
plications and k — 1 additions, we have

o= O ((n + 1)/log, (k)) +k — 1
Ty = {5

b= k-2

since k! =n + 1. If we ignore diophantine con-
straints and choose k = Y (n + 1), to minimize u,
we have:

Tueorem 2. For each a = (ao,ay, * * * , a,) e R** with R
a set of cardinality |R| =s,p(x) =a, + ax + - + ax"
can be evaluated with ¢, vector additions, =, scalar multi-
plications and g, vector multiplications where

o, = O (n/log; (n))
T =g \/ n+1
Hp = 2 \/ n -+ - 2

when n is large relative to s.

Horner’s rule, which is the optimal procedure for evalu-
ating an arbitrary polynomial on the reals, uses n multi-
plications and n additions. Even when a and x assume
fixed real values, there exist vectors a and values x for
which Horner’s rule is still optimal (Ref. 1). When the
coefficients are drawn from a set of size s, however,
Horner’s rule can be improved upon by a significant fac-
tor when n is large relative to s.

The decomposition of p (x) used by algorithm & is very
similar to that used by Paterson and Stockmeyer (Ref. 2)
in their study of polynomials with rational coefficients.
They have shown that O (V' n) vector multiplications
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are necessary and sufficient for such polynomials, but
their algorithms use O (n) additions. Algorithm &
achieves O (Y n) vector multiplications but requires only
O (n/log, (n)) additions when n is large relative to s.
Clearly, algorithm & can be applied to any problem in-
volving polynomial forms.

V. Some Lower Bounds

The purpose of this section is to demonstrate the exis-
tence of problems for which the performance of algorithm
#1 can be improved upon by at most a constant factor. To
do this, we must carefully define the class of algorithms
that are permissible. Then, we count the number of algo-
rithms using C or fewer operations and show that if C is
not sufficiently large, not all problems of a given type
(such as matrix-vector multiplication) can be realized
with C or fewer operations.

A chain B is a sequence of steps i, 3., * * * , 8. of
two types: data steps, in which B8;¢{y, Yy *  * ,Ya}
UK(y: /K, yi #yj;,ij and KCQ is a finite set of con-
stants), or computation steps, in which

Bi=RBi°Br fk<i

and °: Q X Q - Q denotes an operation in a set Q.

Associated with each step g; of a chain is a function B;,
which is 8; if 8; is a data step and

Bi = °(Bj, Br)

if 8; is a computation step. Clearly, 8; + Q" - Q. A chain 8
is said to compute m functions f,,f., - * - ,fmfi: Q"= Q
if there exists a set of m steps 8;, - -, 8;,, such that Bi, =
fol1=10=m,

We now derive an upper bound on the number
N (C,m,n) of sets of m functions {f,, - - - ,f»} that can
be realized by chains with C or fewer computation steps.

LemMa, N(C,omn=v*,v=C+n+m-+|K|+1 if
C=|q|=2.

Proof: A chain will have 1 =d =n + |K| data steps and
without loss of generality they may be chosen to precede
computation steps. Similarly, the order of their appear-
ance is immaterial, so there are at most

<n +d|Kl> éz,,,ﬂ]{‘

ways to arrange the d data steps.
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Let the chain have ¢ computation steps. Each step may
correspond to at most |2 operations and each of the two
operands may be one of at most ¢ + d steps. Thus, there
are at most ||’ (¢ + d)*! ways to assign computation
steps and at most 2% ||t (¢ + d)** chains with d data
steps and ¢ computation steps. A set of m functions can
be assigned in at most (¢ + d)™ ways.

Combining these results, we see that the number of dis-

tinct sets of m functions that can be associated with chains
that have C or fewer computation steps is at most

n+|K| €
N(C, mn)= 3 3 2l |Q!t(t + d)ztem
d=1 =t

<= (n + |K|)C 2K |Q|¢(C + n + |K[)204m
But
(n + |K|) 228 = (C + n + | K|)on+lKl
if C=2 and

|Q]9=(C +n+ |K|)*

if C =0/, from which it follows that

N(C, m, n) é(c +n+ |Kl)40+n+\1({+m+1

= I

where v =C +n+m + |K| +1. Q.ED.
In the interest of deriving a bound quickly, the counting
arguments given above are loose. Nevertheless, the bound
can at best be improved to about v?. As seen below, this
means a factor of about 4 loss in the complexity bound.

Consider the computation of m subset sums of
{x1,%s, ", %}, x; ¢ {reals), as defined in Special Case (2)
of Subsection III-A. In the chain defined above let Q =
{reals} and let @ = {+, addition on the reals}. There are
27 distinct subset sums and the number of sets of m dis-
tinct subset sums is the binomial coefficient

F _ <2n)
m
Fix 0 < & < 1. If C, n, and m are such that N (C,n, m) =

F'-¢ then there exists at least one set of m distinct subset
sums that require C or more additions.
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TaeoreM 3. Algorithm 7] is sharp for some problems, that
is, there exist problems, namely, the computation of m
subset sums over the reals, that require O (mn/log, (m))
operations with any chain or “straight-line” algorithm,
when m = O (n).

Proof: Set v** = F*-¢ where v =C +n +m + |K| + 1.
Then, N (C, m, n) = F'-¢, For large F, the solution for v is

v = <711- In F"")/ n (ii F‘“"")

Since m = O (n), it can be shown from Stirling’s approxi-
mation to factorials and an examination of the binomial
coefficient F that InF is asymptotic to nmIn (s). From this
the conclusion follows. Q.E.D.

The counting argument given above could also be
applied to matrix-vector multiplication, Subsection III-A,
and to polynomial evaluation on the reals, as described in
Section IV, to show that the upper bounds given for these
problems are also sharp.

VI. Conclusions

The algorithm presented here for the evaluation of a
set of linear forms derives its importance from the minimal
set of conditions required of the two operations. In fact,
the only condition required is that addition be associative.
As a consequence, the algorithm applies to a large class of
apparently disparate problems having in common the fact
that they can be represented in terms of linear forms of
this general nature.

The algorithm allows us to treat two important prob-
lems, matrix multiplication with a known matrix and poly-
nomial evaluation with a known polynomial. In both
cases an algorithm is constructed that depends explicitly
on the matrix entries and the polynomial coefficients.
When the entry set of the matrix or of the polynomial
coefficients is fixed and the dimensions of either problem
are large, a sizable savings in the number of required
computations is obtained.

The generality of the algorithm for evaluation of linear
forms suggests that it may have application to many im-
portant problems not mentioned in this paper.
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